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Abstract 

We describe ongoing work which aims to extend the schema-based pro- 
gram synthesis paradigm with explicit models. In this context, schemas 
can be considered as model-to-model transformations. The combination 
of schemas with explicit models offers a number of advantages, namely, 
that building synthesis systems becomes much easier since the models 
can be used in verification and in adaptation of the synthesis systems. 
We illustrate our approach using an example from signal processing. 

1 Introduction 
Schema-based synthesis is a technique for automatically generating code from 
high-!eve1 behavioral specifications. The technjque has been effectively applied 
for generating complete implementations in particular domains, for example, 
signal processing algorit,hms (ATJTOFILTER IS]), and data analysis applications 
(AUTOBAYES [l]). A schema is usually defined as a generic representation of 
a family of applications. Synthesis then instantiates a number of schemas and 
combines them in a particular way. Schemas are a good way of representing 
domain-specific knowledge in a modular and high-level way. Schema-based syn- 
thesis has advantages over other forms of code generation in that schemas can 
be combined in many meren t  ways thus leading to  the ability to  generate mul- 
tiple implementations from the same specification. These implementations can 
be compared against metrics or non-functional requirements before a final choice 
of implementation is made. - 

The OMG’s Model-Driven Architecture (MDA) [3, 41 advocates the devel- 
opment of systems by transforming platform independent models (PIh4s) into 
platform-speciiic models (PSMs). Fkom an MDA point of view, schemas can be 
considered as PIM-to-PIM transformations (from the domain-specific specifka- 
tion language to programming-language independent implementations). Many 
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program synthesis systems do not maintain explicit models of the specification 
language or of the implementation. However, we do advocate such an approach, 
both for the advantages of modeling that it brings to program synthesis and for 
the transference of the advantages of synthesis to MDA. One of the key thrusts 
of MDA is the automation of model-to-model transformations. Schema-based 
synthesis can be seen as one way of automating the transformations. 

Most approaches to MDA, however, define transformations in terms of rewrite 
rules which are applied to models to yield new models. In our approach, we pro- 
pose that the schema (transformation) be defined in terms of an input and an 
output model. The input model defines a subset of applications in the domain 
that a schema can operate on. The output model defines the result of applying 
the schema. In addition, schemas must instantiate the output model to create 
specific artifacts which solve the input problem. Instantiation is not normally 
considered part of MDA, but is a crucial ingredient in program synthesis. This 
paper will show how to combine synthesis and modeling, or, put another way, 
how to include instantiation as part of a domain-specific MDA. 

We feel that current approaches for defining transformations in MDA, e.g., 
those based on XML, XSLT, do not offer enough flexibility for instantiation. 
Synthesis is highly dependent on the specifics of the particular problem under 
consideration in a way that MDA is not. For example, different instantiations of 
models will be generated according to the problem context. Hence, any language 
to define such transformations must have mechanisms for accessing instances. 

The benefits to MDA of merging synthesis and modeling come from the fact 
that synthesis systems are good at automating transformations. For example, 
the AUTOFILTER [5] and AUTOBAYES [l] systems apply multiple schemas to 
solve a particular problem, and the correct application order of the schemas 
can be found through search-based methods. MDA could benefit from these 
techniques. 

2 Schema-based Synthesis 
Program synthesis comprises a range of techniques for the automatic genera- 
tion of low-level executable code from high-level, declarative specifications of 
program behavior. Traditionally, program synthesis has taken the deductive 
approach, where programs are formally derived within a constructive theorem 
prover. The generative approach, in contrast, automates the combination of 
program templates. The schema-based approach, which we adopt here, is a 
combination of these two paradigms. 

A schema is essentially a program template together with applicability con- 
ditions. During synthesis, schemas are recursively applied to assemble code in 
a platform-independent intermediate language. When a program has been fully 
constructed, it is passed to a backend code generator which then translates the 
program into a given target platform. 
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3 Schema-based Modeling 
In this section, we propose a schema development process which directly in- 
corporates explicit models. Our idea is that schemas should be defined with 
respect to explicit input and output models. First we give a general overview of 
the schema development process and then we discuss how this impacts on the 
models and schemas. 
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Figure 1: The Schema Development Process 

Figure 1 shows the artifacts involved in model-based schema development. 
The input model is a representation of the key concepts that can be included 
in specifications and their inter-relationships. The output model, on the other 
hand, defines a model of the generated code. The action of schemas is to  grad- 
ually instantiate the output model. Thus its instantiation can be regarded as 
representing the synthesis state so, in addition to code fragments, records any 
design decisions that have been made in the course of synthesis, plus any extra 
information that the schemas need. 

The input/output models are independent of a particular specification lan- 
guage or intermediate programming language. Rather, they are domain-speciik 
representations of the structure and relationships of the generated artifacts’ - 
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lwhich may, in general, be something other than code. Here, we use “code” in a general 
sense. 
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i.e., an abstract syntax for the domain-specific artifact generated. 
Access to the models is mediated via front- and back-ends. The input model 

must come with an extraction function that defines how input model elements 
can be derived from elements of a particular specifkation language. Similarly, 
the output model requires a translation function that describes how to obtain 
code in the intermediate language given an instantiated model. 

In addition to providing models of the input and output of the synthesizer, it 
is often useful to optionally provide “snapshots” at various stages of the synthesis 
process. These internal models can specify additional entities, which do not 
appear in the final model. Moreover, models may have additional constraints 
specified between them, shown by dotted arrows in Figure 1, which can be used 
for verification purposes both during and after synthesis. 

The upper half of Figure 1 shows the process for developing a schema. A 
schema takes as input two models - an instantiated input model and a partially 
instantiated output model2 and returns a partially instantiated output model. 
Scoping mechanisms can be used to limit the input model that a schema has 
access to or to limit the output model that can be instantiated. This can be used, 
for example, to indicate that a schema only constructs a certain fragment of the 
program. In principle, access to the input specification can also be scoped, 
but non-compositionality often means that this is not appropriate. Schemas 
typically need access to most of the input model to construct code fragments 

Ideally, models should be developed before schema writing begins. In prac- 
tice, however, things are likely to be less clear-cut, with model and schema 
development proceeding in parallel. It is precisely because of this incremen- 
tal development of models that we need schemas to be defined with respect to 
explicit models. 

We now illustrate these ideas with an example from the state estimation 
domain. We discuss how to define models and give a schema following the 
methodology set out so far. 

3.1 Kalman Filter Models 
We will use UML class diagrams as our modeling language. An alternative would 
be some form of grammar notation although is more appropriate for syntactic 
domains. A graphical notation like class diagrams is less prescriptive, and more 
appropriate for underspecified domains. 

We use Kalman filters as a motivating example. These are recursive signal 
processing algorithms used to  estimate system state from noisy sensor data. 
AUTOFILTER is a schema-based program synthesis system which can automat- 
ically derive a range of Kalman filters from high-level specifications. This is 

- a suitable domain for program synthesis (not least because of its relevance for 
NASA) since there is a wide range of algorithms used to solve mathemati- 
cally well-defined problems in this area; yet it is precisely the variability and 

2rnore generally, a schema could take internal models. 
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complexity of potential solutions which makes implementations laborious and 
error-prone. 

The output model for Kalman filters is given in Figure 2. It describes the 
"solution space" in terms of the high-level structure of the possible solutions. 
Input models can be given similarly but, in contrast, describe the mathematical 
structure of the "problem space" in terms of the physics of the problem. 
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Figure 2: Domain description of Kalman Filter output (from [2]) 

The model given here simply defines the static syntactic structure of the gen- 
erated code. We can also enforce semantic constraints on the input and output 
models (as well as between them) by annotating models with OCL constraints. 
Schemas (Le. model transformations) would then be required to satisfy these 
constraints. 

Although the tradition within program synthesis (especially the deductive 
approach) has been to  completely axiomatize the problem domain and reason 
formally about the derivation process, we aim, rather, to allow users to choose 
their level of formalism, by allowing optional annotations. 



3.2 A Kalman Filter Schema 
In keeping with the 00-style we are following, we use a Java-like syntax to 
define a schema for a standard Kalman Filter (Figure 3). This schema generates 
fully instantiated code but, in general, a schema need only partially instantiate 
a model. Schema have two inputs: a fully instantiated input model, and a 

public schema: linear-discrete-kalmm-filter (ddkf-in kf-in, ddkf-out kf-out) { 
/* Declare new filter and give its name from spec */ 
kf-out::Kalman Filter kf = new kf-0ut::Kalman Filter(); 
kf.name = kf-in::Model.name; 

/* ASSUMPTIONS */ 
... 

/* PRECONDITIONS */ 

/* Instantiate main KF loop */ 
... 

kf-out::Loop kf-loop = new kf-out::LoopO; 
kf.loop = kf-loop; 
kf-1oop.lower-bound = 0 ;  
kf-1oop.upper-bound = kf-in::Model.steps; 

/* Instantiate rest of output model by calling subschemas. 
Each subschema is restricted to a submodel of output model. */ 

kf . declaration = kf-declarations(kf -in, kf -out: :Declaration) ; 
kf.initialization = kf-initialization(kf-in, kf-out::Initialization); 

return kf-out; } 
... 

Figure 3: Top-level schema for standard Kalman Filter 

partially instantiated output model. Schema are scoped to restrict access to the 
full output model - the notation schema-name(in-model, out-model :: Class) 
means call the schema with name schema-name with input model in-model and 
output model defined as the directed acyclic graph in out-model with Class as 
root. Declarations are similarly scoped. In the third line, kf is declared as a 
new kalman filter scoped to the output model (kf-out), and later kfloop is 
declared as a new loop (again, in kf-out). We then link the two by assigning 
kfloop to be the loop of the filter (Le. kf .loop). 

The schema calls a number of subschemas, each of which constructs a frag- 
ment of the program text. For example, kf-declarations constructs the ap- 
propriate variable declarations and makes this information available to the other 
schemas. Finally, the schema returns the (partially) instantiated output model. 

Schema also contain assumptions and preconditions (omitted here). The 

6 



. 
U 

i 

informal distinction is that preconditions can be checked for satisfiability from 
the specification whereas assumptions cannot (because nothing has been said 
about them in the specification). It may be desirable to identify properties as 
first class operators in the models and to restrict assumptions and precondi- 
tions to expressions defined over those operators only. Both assumptions and 
preconditions can refer to the original specification, as well as to  what has been 
constructed already. 

4 Conclusions 
Our current efforts lie in developing language support for a schema-based syn- 
thesis system, explicitly linking schemas to  models. We anticipate a core schema 
language, together with various optional extensions, such as a means of specify- 
ing an architecture, a way to incorporate comments and correctness annotations 
into the synthesis process, optional postconditions in schemas, or a means of re- 
ferring to  the synthesis state. We are also formalizing a semantics for the schema 
language. 

We believe that a model-centered schema language for program synthesis 
offers a number of advantages. First, it makes it possible for domain experts 
to adapt and extend existing schemas, and to create new ones. In the cur- 
rent implementation of AUTOFILTER, assumptions about the domain model 
are implicitly distributed throughout the code, so it is not always clear where 
structural assumptions have been made. Second, we can enable some form of 
correctness checking on the well-formedness of schemas. 

Finally, there are several interesting extensions to  the modeling languages 
that might be useful for program synthesis, such as hierarchy, scoping, and 
ordered aggregations. 
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